Spatiotemporal Analysis Of Urban Land Surface Temperature (Ulst) In Davao City
Main Article Content
Abstract
Urban expansion has significantly altered the spatial configuration of green spaces, intensifying the urban heat island (UHI) effect in rapidly growing cities like Davao City. This study investigated the spatiotemporal dynamics of urban land surface temperature (ULST) from 2015 to 2024 across the city’s three congressional districts. Using Landsat 9 satellite imagery and geospatial processing in QGIS, annual land surface temperature (LST) trends were derived and analyzed. Results revealed a consistent increase in both minimum and maximum LST values across all districts, with 2024 recording peak temperatures nearing or exceeding 38°C. The most pronounced warming occurred in District I, particularly in highly urbanized barangays such as 1-A, 7-A, and 11-B. Spatial analysis confirmed that densely built-up, vegetation-deficient zones exhibited the highest thermal intensities, while greener, less developed areas maintained cooler surface temperatures. These findings demonstrate the strong inverse relationship between vegetation cover and surface temperature and underscore the ecological implications of urban land use change. Aligned with the Sustainable Development Goals (SDGs), this study calls for the urgent integration of green infrastructure, climate-adaptive planning, and ecological restoration into the city’s development agenda. This research contributes critical empirical data to support sustainable urban strategies and enhance climate resilience in Davao City.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Baker, J., McPhearson, T., & Boone, C. G. (2018). Urban green space: Linking ecology, environmental justice and health equity. Landscape and Urban Planning, 178, 22–35. https://doi.org/10.1016/j.landurbplan.2018.05.005
Betts, M. G., Wolf, C., Pfeifer, M., Banks-Leite, C., Arroyo-Rodríguez, V., Ribeiro, D. B., … Ewers, R. M. (2019). Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 366(6470), 1236–1239. doi:10.1126/science.aax938
Daugdaug, K. (March 13, 2023). Pagasa forecasts hot days ahead for Davao City. Retrieved from https://www.sunstar.com.ph/davao/local-news/pagasa-forecasts-hot-days-ahead-for-davao-city#:~:text=PHILIPPINE%20Atmospheric%2C%20Geophysical%20and%20Astronomical%20Services%20Administration%20%28Pagasa%29,ranging%20from%2036%20degrees%20celsius%20%28°C%29%20to%2056°C. on February 10, 2024
Degefu, M. A., Argaw, M., Feyisa, G. L., & Degefa, S. (2021). Impact of landscape dynamics and intensities on the ecological land of major cities in Ethiopia. Environmental Systems Research, 10(1), 1-19.
Deilami, Kaveh; Kamruzzaman, Md.; Liu, Yan (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67(), 30–42. doi:10.1016/j.jag.2017.12.009
Edge Davao (March 25, 2023). Davao City's Urban Heat Index Above Normal. Retrieved from https://edgedavao.net/latest-news/2023/03/25/davao-citys-urban-heat-index-above-normal/ on February 2, 2024
Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2022). Adapting cities for climate change: The role of the green infrastructure. Urban Forestry & Urban Greening, 68, 127508. https://doi.org/10.1016/j.ufug.2021.127508
Gómez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235-245.
Guo, L., Di, L. & Tian, Q. Detecting spatio-temporal changes of arable land and construction land in the Beijing-Tianjin corridor during 2000–2015. J. Geogr. Sci. 29, 702–718 (2019).
Huang, F., Ma, Z., Chu, Y., Bai, Y., & Wu, J. (2021). Spatiotemporal variation of land surface temperature and its response to urbanization in Southeast Asia. Remote Sensing, 13(15), 2990. https://doi.org/10.3390/rs13152990
Huang, H., Ma, H., Zhang, L., & Chen, X. (2021). Projected land surface temperature changes under future climate scenarios in Asia. Remote Sensing, 13(9), 1778. https://doi.org/10.3390/rs13091778
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. https://www.ipcc.ch/report/sixth-assessment-report-synthesis-report/
Jones, B., & Wang, J. (2022). Urbanization and Climate Change: The Role of Land Surface Temperatures. Journal of Urban Climate, 15(3), 112-129.
Kumar P, Debele SE, Khalili S, Halios CH, Sahani J, Aghamohammadi N, Andrade MF, Athanassiadou M, Bhui K, Calvillo N, Cao SJ, Coulon F, Edmondson JL, Fletcher D, Dias de Freitas E, Guo H, Hort MC, Katti M, Kjeldsen TR, Lehmann S, Locosselli GM, Malham SK, Morawska L, Parajuli R, Rogers CDF, Yao R, Wang F, Wenk J, Jones L. Urban heat mitigation by green and blue infrastructure: Drivers, effectiveness, and future needs. Innovation (Camb). 2024 Feb 7;5(2):100588. doi: 10.1016/j.xinn.2024.100588. PMID: 38440259; PMCID: PMC10909648
Li, X., Zhang, Y., & Wang, R. (2023). Mitigating urban heat islands with green infrastructure in tropical cities: A meta-analysis approach. Urban Climate, 50, 101617. https://doi.org/10.1016/j.uclim.2023.101617
Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., & Li, X. (2020). The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of The Total Environment, 605-606, 426-435. https://doi.org/10.1016/j.scitotenv.2017.06.229
Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., & Li, X. (2022). The surface urban heat island response to urban expansion: A global analysis of the magnitude, drivers, and structural dependencies. Nature Communications, 13, 1–11. https://doi.org/10.1038/s41467-022-28294-9
Mekonnen Amberber;Mekuria Argaw;Gudina Legese Feyisa;Sileshi Degefa; (2020). Status, approaches, and challenges of ecosystem services exploration in Ethiopia: A systematic review . Chinese Journal of Population, Resources and Environment, (), –. doi:10.1016/j.cjpre.2019.07.001
NOAA. (2022). Understanding El Niño and La Niña. National Oceanic and Atmospheric Administration. Retrieved from https://www.noaa.gov
Pal, S., & Ziaul, S. (2021). Urbanization and land surface temperature change relationship in Kolkata: A spatial-temporal perspective. Environmental Challenges, 4, 100095.https://doi.org/10.1016/j.envc.2021.10009
Palma, R.A. (2019, August 20). Metro Manila Needs More Public Parks and Green Spaces. Here’s Why. Retrieved on April 6, 2023 from https://www.cnnphilippines.com/life/culture/2019/8/20/public-green-spaces-manila.html
Peng, S., Piao, S., Ciais, P., Zhao, Y., & Li, Z. (2021). Nature Reviews Earth & Environment, 2, 881–897. https://doi.org/10.1038/s43017-021-00201-6
Rahaman, S., Jahangir, S., Haque, M.S. et al. Spatio-temporal changes of green spaces and their impact on urban environment of Mumbai, India. Environ Dev Sustain 23, 6481–6501 (2021). https://doi.org/10.1007/s10668-020-00882-z
Rizwan, A. M., Dennis, L. Y. C., & Liu, C. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1), 120–128. https://doi.org/10.1016/S1001-0742(08)60019-4
Smith, A., Brown, P., & Taylor, L. (2020). Variations in Land Surface Temperatures: Climatic Drivers and Urban Implications. Climate Dynamics, 54(5-6), 2107-2123.
Smith, N. (2001). Uneven Development, Geography of, Editor(s): Neil J. Smelser, Paul B. Baltes, International Encyclopedia of the Social & Behavioral Sciences, Pergamon, 2001, Pages 15958-15962, ISBN 9780080430768, https://doi.org/10.1016/B0-08-043076-7/02482-7.
Sun, C., Wu, Z., Lv, Z., & Fu, X. (2022). Urban expansion and its impact on land surface temperature in the context of climate change: A case study of four cities in China. Environmental
Monitoring and Assessment, 194, Article 25. https://doi.org/10.1007/s10661-021-09621-4
Sun, T., Zhao, Q., Chen, F., Wang, Y., & Chen, X. (2022). Investigating the impact of urbanization on land surface temperature across different climatic zones using satellite data. Environmental Research Letters, 17(4), 045001. https://doi.org/10.1088/1748-9326/ac5c8f
United Nations (2018). Revision of World Urbanization Prospects. Retrieved on March 26, 2023 from https://www.un.org/development/desa/publications/2018-revision-of-world urbanization-prospects.html
Wang, Y., Berhane, K., Gilliland, F., & Islam, T. (2021). Vulnerability of populations to urban heat: A systematic review and meta-analysis. Environmental Research, 196, 110973. https://doi.org/10.1016/j.envres.2020.110973
Zhao, L., Lee, X., Smith, R. B., & Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature, 511(7508), 216–219.
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., ... & Sobrino, J. A. (2021). Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing of Environment, 246, 111832. https://doi.org/10.1016/j.rse.2020.111832
Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2016). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 152, 51-61. https://doi.org/10.1016/j.rse.2014.05.017
Zhou, Y., Li, X., Asrar, G. R., Smith, S. J., & Imhoff, M. (2019). Remote Sensing of Environment, 219, 206–220. https://doi.org/10.1016/j.rse.2018.10.015